

DF

Maritime Energy Transition – Setting the Course towards Decarbonisation of Shipping

Searica Intergroup

European Parliament - 27.06.2018

Valentine Willmann

EU Policy, Projects & Partnerships Manager Hydrogen, Fuel Cells and Electro-mobility in European Regions

Impact of shipping and port operations on air quality

Cities and regions are heavily impacted by emissions from the maritime sector

- Ports often located close to city centres
- Emissions predicted to increase a lot in next few decades
- Concentration of emissions and concentration of population around port areas, impact on quality of life: noise and vibration levels
- Ports are key for trade: need to remain competitive in the future
- → A lot of interest to decarbonise the maritime sector
 - Emissions from shipping
 - Emissions from port operations

Example: port of Marseille, France Source: Air PACA / Region PACA

Zero emission solutions

Renewable electricity

Hydrogen production

Hydrogen applications

Fuel cells are a solution for large, heavy vessels

- Hydrogen can be produced from renewable electricity → zero emission fuel
 - Applications: ferries, tankers, container ships, cruise ships etc.
- Interesting for regions with surplus or curtailed renewable energy

Advantages:

- Long range, short refuelling time
- Modular and flexible system
- Can be hybridised with other technologies

Electrolysis: production of green hydrogen

Hydrogen & fuel cells

Current developments

- Demonstration stage: more research will solve the technological challenges
- Demonstration projects have proven that the technology is working and well adapted for the maritime sector
- Outlook to future:

10 years: hydrogen for auxiliary power units, a few users with local hydrogen production

Long term: engines powered by hydrogen or hybrids, large number of users

MARANDA project - project info

- Focusing on the development of the fuel cell system
- Demonstration vessel: retrofit of a finish research vessel operating in artic conditions
- Vessel will be tested for 18 months

HySEAS project in Scotland

- Ship was first hybridised (diesel/ electricity) – 20% emission savings
- Are now looking to replace diesel with hydrogen – 100% savings

What needs to be done today?

- Storage of large quantities of hydrogen in ports + bunkering
- Storage of hydrogen on board of vessels compressed? Liquified?
- Chicken and egg situation: right infrastructure needs to be in place in ports (storage, distribution, bunkering)
- Technology is still expensive, not a lot of potential for replicability in maritime sector

The absence of specific regulations and standards is hindering the development of the technology:

- Currently a very clear and highly damaging regulatory gap, especially for the design and type approval of hydrogen vessels, as well as for landing/bunkering
- Presently, the use of hydrogen as a fuel and hydrogen fuel cells is not explicitly covered by IMO rules

 \rightarrow Is vital to prepare a regulatory framework favourable to the testing and introduction of innovative technologies

Decarbonisation of port operations

Establish ports as zero emission areas

On shore power generation

- Provide power supply for ships stationed in harbour
- Could be interesting for cruise ships in the future for instance

Surf & Turf project – Orkney (Scotland)

- Onshore excess renewable energy used to produce hydrogen
- Hydrogen is shipped to the port
- Used to supply electricity to the ships while docked
 www.surfnturf.org.uk

Material handling equipment

Cranes, forklifts, heavy duty trucks, waste management vehicles

- → So far mainly with non-port-specific equipment
- \rightarrow Commercially available product

Thank you for your attention

Contact valentine@hyer.eu / + 32 48799 82 98

HyER Secretariat - Avenue Palmerston 3, 1000 Bruxelles secretariat@hyer.eu

