

ENERGY RECOVERY AND CARBON FOOTPRINT OF KAKOLANMÄKI WWTP

1.4.2022

Jarkko Laanti, Quality and Environmental Manager

TURKU REGION WASTEWATER TREATMENT LTD

- Wholesale company owned by 14 municipalities in Turku region in South-Western Finland
- Centralized wastewater treatment in the area
- Turku Region Wastewater
 Treatment Ltd (TSP) mission is
 to produce good quality and
 cost-effective wastewater
 treatment services to its owner
 municipalities by operating
 Kakolanmäki WWTP

KAKOLANMÄKI WWTP

- WWTP is located in the solid rock of Kakolanmäki hill in the middle of Turku city
- Started in 2009
- WWTP treats 300.000 resident's wastewater and industrial wastewater of the area
- Average inflow is 90 000 m3/d
- The treated wastewater is discharged into the harbor basin

OPERATING MODEL

Own personnel focuses on providing efficient and high-quality wastewater treatment

- Manages, operates and develops the WWTP (14 employees)
- Expertise in centralized regional wastewater treatment
- Strategy:
 - Best possible cleaning results cost-effectively
 - Optimizing the energy efficiency and carbon footprint
 - Preparing for the climate change and exceptional situations
 - Active partner in research and development projects

Support services are outsourced to reliable partners

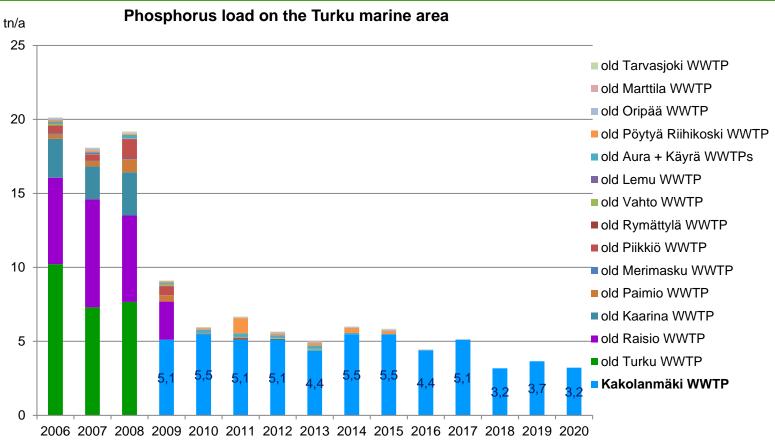
- Sludge treatment (Gasum Oy)
- Maintenance services (Caverion Suomi Oy)
- Laboratory and reporting services (Lounais-Suomen vesi- ja ympäristötutkimus Oy)
- Cleaning, maintenance of automation systems, financial management services...

We work in accordance with the UN's Sustainable Development Goals

RESULTS OF PURIFICATION

AMOUNT OF WASTEWATER	2017*	2018*	2019*	2020*	2021*	
m ³ /d	84 400	74 100	93 300	89 000	83 600	
m ³ /a	30 800 000	27 000 000	34 100 000	32 600 000	30 500 000	
CONCENTRATION [mg/l]	2017*	2018*	2019*	2020*	2021*	ENIVIRONMENTAL PERMIT*
COD _{Cr}	38	35	27	24	20	≤ 60
BOD _{7ATU}	3,8	2,8	4,0	2,4	2,2	≤ 10
Phosphorus	0,17	0,12	0,11	0,099	0,13	≤ 0,3
Nitrogen	10	11	7,9	7,2	7,2	-
Suspended solids	3,6	2,2	2,6	1,2	1,6	≤ 15
CLEANING EFFICIENCY [%]	2017*	2018*	2019*	2020*	2021*	ENVIRONMENTAL PERMIT*
COD_Cr	95	96	96	96	97	≥ 90
BOD _{7ATU}	99	99	99	99	99	≥ 95
Phosphorus	98	99	99	99	98	≥ 95
Nitrogen	84	86	84	86	86	≥ 75
Suspended solids	99	99	99	100	100	≥ 95

^{*} Including the sewage network overflows



LOADS ON THE MARINE AREA

puhdistamo Ov

Phosphorus load on the Turku marine area has decreased approximately **83** percent or 16 t/a (2020 vs. 2006-2008) **BOD**_{7ATU}-load on the Turku marine area has decreased approximately **79** percent or 280 t/a (2020 vs. 2006-2008) **Nitrogen load** on the Turku marine area has decreased approximately **60** percent or 300 t/a (2020 vs. 2006-2008) **Suspended solids load** on the Turku marine area has decreased approximately **94** % or 610 tn/a (2020 vs. 2006-2008)

COOPERATION

Energy efficiency by optimizing and developing energy consumption


- Cooperation with local energy companies on heat recovery from wastewater
 - Heat for 15 000 households and almost all district cooling in Turku region
- Cooperation with Gasum on sludge recovery
 - Biogas, nutrients and heat

Own power generation

- Heat recovery from ventilation and compressors
 - Equivalent to 300 household's energy consumption
- Solar panels
- Heat Recovery to produce warm process water
- Future Energy Efficiency Measures
 - Turbine before the Outlet Pipe
 - Enhanced heat recovery from the aeration compressors

Commitment for the better Baltic Sea

The Baltic Sea Challenge (http://www.itamerihaaste.net/en)

HEAT PUMP STATION

- The heat of treated wastewater is used as renewable energy
- Energy company is producing district heating and district cooling from the wastewater
- The energy output is 200 GWh / year district heating and 20 GWh / year district cooling
 - That means 14 % of all district heating and almost all district cooling in Turku region
- Turku region carbon emissions are 80 000 tons lower per year because of the use of the heat pump station (vs. the situation in 2009)

Efficiency is good: One unit of electrical energy produces three units of district heating and two units of district cooling

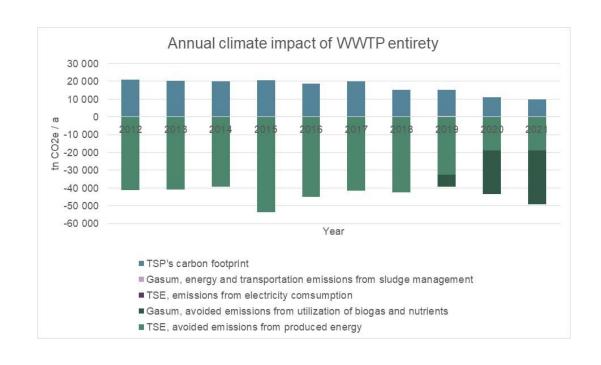
SLUDGE TREATMENT

- Gasum Oy owns and operates the biogas station
 - 40 000 tn/a sludge from Kakolanmäki WWTP
- Mesophilic Process + Post hygienization (THP removal)
 - Liquefied Biogas production for traffic
- Reject Waters treated on site (Evapo-Stripping) (Low loading to WWTP)
 - High quality liquid Nitrogen-product (with End of Waste -status)
- The nutrients produced by the community are recycled for utilization (nutrient products for industry and recycling nutrients for landscaping and agriculture)
 - Solid fertilized compost for soil production + Biochar production -piloting

ANNUAL CARBON FOOTPRINT

Measures which have reduced the carbon footprint

- Energy consumption of the WWTP has been reduced
- Starting from the year 2019 the WWTP will move step by step to zero-emission electricity
- By changing the alkalisation chemical in 2016 reduction in emissions was achieved
- Variation in the WWTP inflow and loading causes changes in the evaluation of direct emissions



CLIMATE IMPACT OF WWTP AS ENTIRETY

- In the chart emissions of the WWTP operation and the emissions and avoided emissions from operations affiliated with it are presented
 - WWTP operation
 - Sludge treatment at Gasum's biogas plant
 - Waste heat utilization at TSE's heat pumping plant
- Operation enables biobased energy production in external entities which makes it possible to avoid using fossil energy sources

ENERGY BALANCE 2021

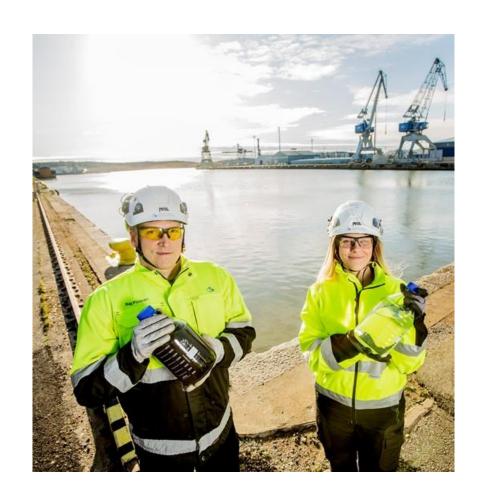
ENERGY CONSUMPTION OF WWTP AND NETWORK

TOTAL ENERGY CONSUMPTION	22 908 MWh/a
 TSP, pumping stations 	7 000 MWh/a
• TSP	15 908 MWh/a

ENERGY PRODUCTION OF WWTP AS ENTIRETY

• TSP, solar panels (+ turbine)	35	MWh/a
• TSP, heat recovery		MWh/a
TSP, process water heat exchanger	549	MWh/a
 TSE, heat pumping plant, district heat production (net) 	24 558	MWh/a
 TSE, heat pumping plant, district cooling production (net) 	174 704	MWh/a
 Gasum, biogas plant, sludge treatment (TSP's share, net) 	5 889	MWh/a
TOTAL ENERGY PRODUCTION	208 034	MWh/a

WWTP operations produce nearly ten times as much energy as they consume



FOR THE BETTER FUTURE FOR ALL

- WWTP's operations are based on excellent know-how and optimized operating models. This knowledge can be utilized all over the world.
- Interest in the wastewater expertise has already been considerable, and there are thousands of visitors every year from all over the world.
- The whole process is a great example of the functionality of a circular economy.

Taking into account all factors, the end result is the world's best wastewater treatment.

