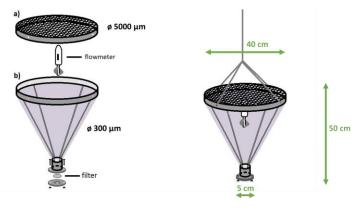


Microplastics as contaminants in the water environment

Ewa Maria Siedlecka

Polish Ecological Club, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland University of Gdańsk, Wita Stwosza 63, 80-309 Gdańsk, Poland

CCB/EU/Postkodstiftelsen supported Plastic Free Baltic Project (CCB Action B1.7), 2017



Microplastics

most commonly defined as man-made plastic items smaller than 5 mm.

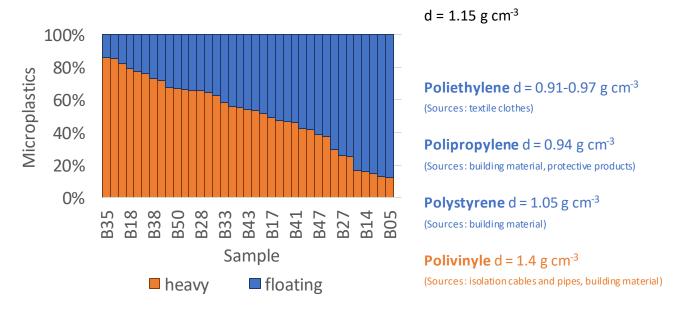
Symbol	Basin	Sampling point
1	Vistula River	Kwidzyń
2		Tczew
3		Kiezmark
4		Sobieszewo
5	Nogat River	Malbork
6		Kępki
7	Szkarpawa River	Rybina
В	Effluents of Municipal Wastewater Treatment Plants	Gdańsk Wschód
С		Gdynia PEWIK
D		Swarzewo

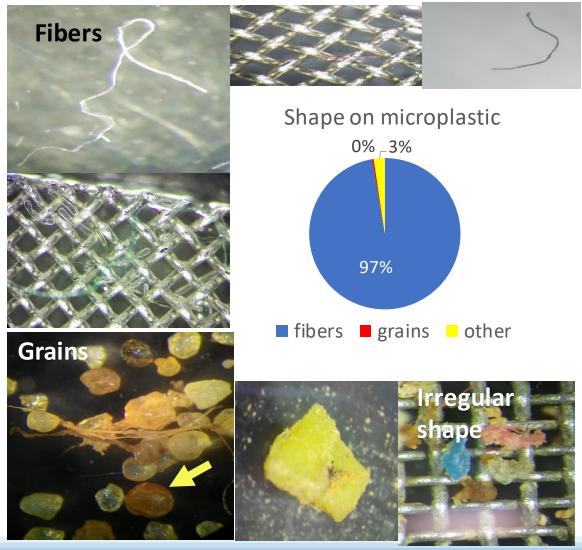
- B. Gdańsk Wschód 860 000 PE
- C. Gdynia PEWIK 440 000 PE
- D. Swarzewo 75 000 130 000 PE PE- Population Equvalent

The duration: June-December 2017

The ranges of water filtered volume:

- Rivers 30 7 740 L
- Sewage treatment plants 860 11 380 L

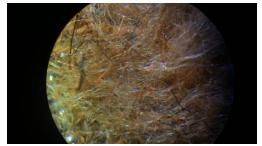

Just after sampling

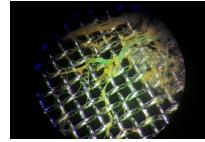


Properties of microplastics:

- The main microplastics in surface water and effluents from WWTPs were fibers
- The ratio of microplastics floating on surface of water to those suspended in water was around 1

Solution: 300g NaCl / 1L H₂O





Conclusions and Challenges

- ➤ Studied sewage treatment plants removed microplastics in 60%, and still about 400 particles/m³ are discharged to water
- ➤ Microplastics collected at the river shore were in the higher particle count than that in mainstream of river waters
- The main microplastics in river water are fibers. They come from housholds and industry washing.
- ➤ Maritime transport and fishing are the source of fibers into water from ropes and nets.

- Education of society
- making lifestyle changes (reduce, reuse, recycle)
- determination the safe level of microplastics in water and food
- Development and standardized metods for microplastics sampling and analysis in food and water
- introduction the obligation monitoring of microplastics in food and water
- Developement the processes to remove the microplastics from sewage
- > pressure on the governments for change the policy
- looking for new materials that will replace the currently used plastics

A solid knowledge base is critical for policy makers

We do not know if and how microplastics may affect human health

