

Establishing fish stock recovery areas in the Black Sea Region – a key measure for sturgeon/fish populations revival

Dr. Cristina Sandu - International Association for Danube Research

Dr. Simion Nicolaev – Advisory Group on Environmental Aspects of the Management of Fisheries and other Marine Living Resources, Black Sea Commission

Global fishery

- key contribution to SDGs
- employment > 39 mil. people (2018)
- capture fishery > 150 bil. USD (2018)

Source: FAO, 2020

HOWEVER

Over 90% of fish stocks overfished or exploited at maximum sustainability level

Black Sea fishery

- 75% fish stocks overexploited in 2018 (a decrease from 88% in 2012)
- Dominance of small pelagic species (low income)
- Top commercial species: European anchovy, whiting, horse mackerel
- Revenue > 250 mil. USD

Landings/country	Average 2016-2018, t
Bulgaria	8,503
Georgia	70,869
Romania	8,046
Russian Federation	70,006
Turkey	273,977
Ukraine	7,214
Total	438,615

Perspectives ?

Overexploitation aggravates fish stocks decline – increased CPU, more aggressive fishing tools

Impact on habitats and remaining stocks will increase:

- intensive trawling nearly wiped out bottom living species in the Irish Sea (Thurstan & Roberts 2010),
- seabed trawling had severe adverse effects on benthic communities/habitats (ICES, 2019, Cyrielle et al., 2020)

Establish fish stock recovery areas (no-take zones) in the Black Sea

Fish stock recovery areas

- Provide long term benefits to biodiversity and local economy (e.g enhance fishery, local tourism)
- Protected fish grow larger, support replenishment (more offspring)
- Fish species swim outside the protected area (spillover), contributing to local fishery
- Eggs/larvae supplied also to adjacent areas
- Offspring settle into surrounding fishing grounds
- Protecting habitats from the damage caused by fishing gears enhances species recovery
- More diverse habitats host higher biodiversity and are more resilient to environmental challenges

Larger fish produce more offspring

Barneche et al., 2018. https://science.sciencemag.org/content/360/6389/642

Supportive scientific evidence

ICES Journal of Marine Science

ICES Journal of Marine Science (2018), 75(3), 1166–1168. doi:10.1093/icesjms/for

Contribution to the Themed Section: 'Marine Protected Areas' Food for Thought No-take marine reserves are the most effective protected areas in the ocean

ICES Proving Camella Totomating Technology

Enric Sala¹* and Sylvaine Giakoumi

Biomass on average 670% higher than in unprotected areas....enhance local fisheries and create jobs and new incomes through ecotourism (Sala & Giacoumi, 2018).

Kenya: fish size, biomass and potential value increase in protected areas (Chirico et al., 2017)

Spain: fish eggs and larvae drifted around a marine reserve increased abundance for three commercially important species (López-Sanz et al, 2011)

Mexico: species survived in the reserve to mass mortality induced by severe climate hypoxia, recovered quicker through greater reproduction...larval spillover to surrounding fishing grounds (Micheli et al. 2012).

Florida: distribution of record catches of large sea fish was concentrated around the edge of the marine reserve (nearly a decade of protection) (Bohnsack 2011).

Australia: reef reserves (28%) produced half of the species replenishment to the whole region (reserves plus fishing grounds). The weight of adult fish per unit area was double (Harrison et al. 2012)

Reef sharks more abundant in no fishing zones, proving that even **mobile species benefit of such areas** (Bond et al., 2012; Dwyer et al., 2020)

Reef fish biomass recover within community-managed no take zones (Gilchrist et al., 2020)

Key role for the recovery of endangered species Danube sturgeon case

IUCN, 2010 – update ongoing

Russian sturgeon - critically endangered, decreasing

Ship sturgeon – critically endangered, decreasing

Sterlet – vulnerable, decreasing

Stellate sturgeon – critically endangered, decreasing

Atlantic sturgeon – critically endangered (EX in DRB)

Beluga – critically endangered, decreasing

Conservation efforts in the Danube Region

Strategic actions

- 2005: Action Plan for the conservation of sturgeons (Acipenseridae) in the Danube River Basin adopted under Bern Convention, 2005
- 2006: Romania ban sturgeon fishery, launch supportive stocking programs
- 2009, 2011: Serbia and Bulgaria ban sturgeon fishery
- 2012: Establishment of Danube Sturgeon Task Force EUSDR AP 6 coordinate conservation efforts in DRB
- 2013: Elaboration of "Sturgeon 2020" program EUSDR flagship project
- 2016: Sturgeon declared flagship species of Danube Basin (ICPDR)
- 2017: ICPDR Sturgeon Strategy endorsed by Danube water authorities

Recent projects

- Distribution of restocked sturgeons in the Black Sea
- Prevention and counteracting poaching and illegal trade
- Creation of aquatic ecological corridors for migratory fish species
- Investigating fish behaviour at the Iron Gates dams
- Restoring fish migration at the Iron Gates

Sturgeon life cycle calls for cooperation between Danube and Black Sea stakeholders

- Spawning migration from the Black Sea to the Danube River
- Need habitat protection and continuity in the Danube and Black Sea regions

Legal frame

- Strategic Action Plan for the Rehabilitation and Protection of the Black Sea, 1996 (amended in 2009)
- International Conventions: Bern Convention, Bonn
 Convention, CITES, Convention on Biological Diversity
- Pan-European Action Plan for Sturgeons adopted under Bern Convention, 2018
- EU legislation: HD, WFD, MSFD

Beluga sturgeons tagged and released in the Danube returned to Black Sea (yellow arrows) (data: DDNI, Tulcea)

Urgent conservation measures needed in the Black Sea

- Harmonized monitoring methods (habitat identification/evaluation, assessment of populations and by-catch)
- Key habitats declared strictly protected area (no-take zones)
- Ex-situ conservation facilities established along the Black Sea coast
- Supportive stocking programs, based on scientific advice
- Evaluate efficiency of stocking programs (survival rate, distribution, return rate for spawning)
- Enhance control of sturgeon fishery ban and protection measures in no-take zones
- Support fishermen communities to develop alternative livelihood to sturgeon fishery (aquaculture, ecotourism, guiding)
- Elaborate a sturgeon conservation plan for the Black Sea

The way ahead

Establishing a network of fish stock recovery areas in the Black Sea will support not only biodiversity conservation but also revival of depleted stocks

- Identify key habitats to be established as fish stock recovery areas/no-take zones (NTZ)
- Map spatial distribution of human activities in these areas
- Establish the frame for multi-stakeholder dialogue
- Elaborate management plans for NTZ with active involvement of key stakeholders
- Consider compensatory measures/alternative livelihood for lost fishery grounds
- Elaborate a compendium of NTZs case studies and lessons learned (awareness raising)
- Facilitate exchanges and visits of stakeholders to successful NTZs (model)
- Support development of sustainable alternative activities near the NTZs

Take home message Reduced human impacts favour recovery of marine ecosystems/fish stocks AND provide benefits to coastal communities

The lesson learned during covid lockdown

- Lower human disturbance during spawning period
- Increased fish stocks dolphins come near the shore tourism benefits
- Fishermen amazed by the high captures (lower CPU)

Contact: cristina.sandu@danube-iad.eu, nicolaev@alpha.rmri.ro